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Atomic force microscopy (AFM) is paving the way for understanding the solid–liquid interfaces at the
nanoscale. These AFM studies are complemented with molecular dynamics (MD) simulations of hydra-
tion layers over candidate surfaces for a comprehensive characterisation. We earlier proposed, in
Ranawat et.al. (2021), a deep-learning (DL) network to predict hydration layers over the candidate sur-
faces much more rapidly than computationally-intensive MD. However, the proposed elements-as-
channels based network is bound to the elements present in the training surfaces. Here, we develop a
generalised descriptor of the surface to train element-agnostic networks. We demonstrate the descrip-
tor’s efficacy by predicting the hydration layers over a dolomite surface using a network trained on
the calcite and magnesite surfaces. We also demonstrate the transfer-learning capability of such a
descriptor by incorporating mica into the training surfaces, and predict the pyrophyllite and boehmite
surfaces. Further, we propose an energy-based DL framework to gauge the possible prediction accuracy
of a network on surfaces hitherto unseen. We combine these advance techniques into a generalised work-
flow to complement AFM studies.

� 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The nature of the complex hydration structures formed at
solid–liquid interfaces plays a key role in many macroscopic sur-
face phenomena [1,2], that drive various natural and technological
processes [3]. Amongst many complementary techniques to char-
acterise solid–liquid interfaces at the nanoscale, Atomic force
microscopy (AFM) [4] has emerged as a leading method to image
systems in solution at high speed with molecular resolution [5–
14]. However, the convolution of tip-surface-solvent interactions
and entropic effects in the measured force at high resolution
means that it remains a challenge to provide comprehensive
understanding and interpretation of the results - requiring exten-
sive free energy simulations [15–18].

This challenge was bypassed, to some degree, by the introduc-
tion of methods that linked experimental AFM force data directly
to water densities [19,20]. These approaches have been recently
expanded to include the influence of the hydration features around
the tip [21] and radius of the tip [17]. Ultimately, even these
approaches necessitate systematic molecular dynamics (MD) sim-
ulations of water on the surface, which are accessible only to
experts and only if good classical force field parameterisations
are available. These challenges render the high resolution AFM
imaging in liquids remains limited in application, especially con-
sidering the rapid progress seen in molecular characterisation
offered by functional-tip AFM at low-temperature and ultra-high
vacuum [22,23,]. This is particularly troubling when we consider
the breakthroughs seen in the application of AFM to biomolecular
systems [24].

In our previous work we proposed a deep-learning (DL) U-Net
network with elements-as-channels input [25]. This network
demonstrated a rapid, robust and reliable prediction of hydration
layers over surfaces, and defects, of polymorphs of calcite, directly
from their atomic structures. However, binding the network inputs
to certain elements (calcium, carbon, and oxygen in that case)
posed a big disadvantage when surfaces with other elements were
studied. In the present work, we introduce a novel four-channel
descriptor to depict the surface structure, based on the MD force-
field terms, namely, their van der Waals and Coulombic interac-
tions (see Fig. 1). This element-agnostic design is shown to be
advantageous in predicting various surfaces with a wide range of
elemental composition. Further, this design is shown to improve
the performance of the network on newer surfaces, through trans-
fer learning [26], which pass on the knowledge trained from
related surfaces by progressively augmenting the training set.
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Fig. 1. Schematic of the workflow for hydration layer prediction over a surface (here, (010) boehmite with aluminium, hydrogen and oxygen atoms represented by grey,
green, and red circles, respectively): (a) The atomic structure of the surface. (b) The four-channel density descriptor of the surface, comprising non-bonded interactions (NB),
zoomed-in attractive region of the non-bonded interactions (NB attractive), the positive and the negative parts of the electrostatic interactions (Pos and Neg, respectively). (c)
The energy network. (d) The deep U-net neural network, adapted from [25] (CC-BY). (e) Simulated hydration layers over the surface. (f) Predicted hydration layers over the
surface using the DL network.
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Notwithstanding the advantages, the proposed DL networks are
overconfident in their predictions due to their deterministic nature
[28]. Given a surface input, seen/unseen by the network during
training, the hydration density are predicted with 100% certainty,
even when the prediction is erroneous. To solve this issue, a sec-
ondary model, called an energy-based model, can provide out-of-
distribution detection [29]. We adapted this energy-based DL
framework to predict an ”energy” or a score of the four-channel
descriptor of the surface. This score is a robust figure-of-merit to
gauge the representation (log-likelihood) of a new surface in the
given training set. We thereby demonstrate a framework which
estimates the possible accuracy with which network can predict
the hydration layers over the given surface.

Our approach links strongly to the developing DL methods
applied to data challenges in Scanning Probe Microscopy (SPM)
[30–33]. In particular, the success of deep learning Convolutional
Neural Networks (CNN) [34] in image recognition tasks has led
to their application to the analysis of SPM images [35], especially
in the context of molecular/surface feature/defect characterisation
[36–41], scanning-probe characterisation [42,43], and techniques
for autonomously-driven SPM [44–46].

However, no earlier studies, beyond ours, have applied DL to
SPM at solid–liquid interfaces [47]. Furthermore, this work is an
entirely different workflow approach from the past studies of DL
applied to SPM, due to the system-agnostic descriptor, out-of-
distribution detection technique, training data and DL model.
2

In the following sections, we present the complete workflow for
the generalised tools to predict hydration layers over surfaces. This
workflow comprises three parts. Firstly, a DL network that can
rapidly predict hydration layers and screen candidate surfaces to
characterise surface structures with hydration layers imaged from
AFM, cif. Fig. 1. Secondly, a transfer-learning based training surface
augmentation, afforded by element-agnostic surface descriptor
design, to reliably include new surfaces and enhance the network
capability. Lastly, an energy-based secondary DL model that
benchmarks the possible accuracy of a network, given a set of
training surfaces. Cumulatively, these methods aim to provide
rapid, robust, and reliable AFM image analysis of hydration layers
over varied surfaces.
2. Methods

2.1. MD and training data

We simulated (10�14) surfaces of calcite, magnesite, and dolo-
mite using the inter-atomic potentials derived by Raiteri et al.
[48], an extensively used forcefield for AFM imaging of carbonate
minerals in liquids [16,14,49]. We chose the SPC/Fw flexible model
for water [50]. In the case for (001) mica-water interactions, we
used the CLAYFF forcefield [51] with TIP3P [52] water model, as
used in mica-solvation studies in the context of AFM imaging
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[53]. We performed the MD simulations using the LAMMPS MD
code [54].

These forcefields are functionally made of bonded (bonds,
angles, and dihedrals) and non-bonded interactions. In the used
forcefields, the non-bonded interactions, primarily responsible
for surface-water interactions, comprised pairwise and electro-
static interactions, given respectively as:

EpairwiseLennard�Jones ¼ 4� r
r

� �12 � r
r

� �6� �

EpairwiseBuckingham ¼ Ae�r=q � C
r6

ð1Þ
Eelectrostatic ¼ q1q2

4p�or2
ð2Þ

Hence, we designed a four-channel surface descriptor that encapsu-
lates these non-bonding interactions. The pairwise interactions
were taken from the pairwise interaction potentials between the
surface atoms and water molecule, which were either Lennard-
Jones or Buckingham type potential, cif. Eq. 1. To better capture
the repulsive and the attractive parts of the non-bonded forcefield
in a normalised input — required for effective network training —
these fields were split into separate channels. Secondly, the electro-
static interactions were represented by the product of surface
atom’s charge and the charge on oxygen of the water, cif. Eq. 2. This
accommodated the different water models used across training sur-
faces. The product-charges were smeared with a gaussian atomic
density to get an equivalent electrostatic forcefield. Similar to the
non-bonded forcefield, the electrostatic forcefield was also split into
the positive and the negative electrostatic forcefield.

As in our previous approach [25], we created a large dataset of
surface defects by removing permutations of the top surface atoms
in the calcite, the magnesite, and the mica surface (see Supplemen-
tary Information for more details). We generated 39,708 cases,
27,504 cases, and 49,872 cases of the calcite, the magnesite, and
the mica surfaces, respectively. These cases included a,
10� 10� 20 Å3 volume, four-channel descriptor of the surface
for input and a target of hydration layer density over the surface,
cif. Fig. 1 (b, e). Finally, these cases were distributed into training,
validation, and test sets. The training set was used to optimise the
network parameters. The validation set was used to determine the
progress of training the network and avoid over-fitting. Lastly, the
test set was used to gauge the unbiased performance of the trained
network. In this work, an approximate split of 70%, 20%, and 10% of
the dataset was used for training, validation, and testing, respec-
tively. Given the large dataset in this work, a smaller test set was
considered to be sufficient [55]. Moreover, the work also includes
tests on newer surfaces with reasonable results, which show con-
sistent trends in test errors making us confident with the split
used.

2.2. Machine learning

For training, we used the DL U-Net architecture, comprising
three pooling scales and skip connections [56], as described in
our previous work [25], cif. Fig. 1 (d). However, the model was
re-purposed to take-in inputs of 4 channels. Although the network
had to be trained from scratch, the element-agnostic approach of
the four-channel descriptor lead to simpler integration of surfaces
with varied surface elements. Newer surfaces were accommodated
without the need to re-train a new network with random initial
weights. We first trained our network on the (10�14) surfaces of cal-
cite. Then we progressively augmented the training data set, one at
a time, with the (10�14) magnesite and (001) mica surfaces, to
demonstrate the transfer-learning aspect of the network. Further,
we predicted increasingly challenging surfaces, that were not rep-
3

resented in the training sets of the networks, to gauge the general-
isability of the network with progressive data augmentation.

For out-of-distribution detection, an energy-based DL frame-
work [57,29] was designed that follows the encoder part of the
U-Net architecture, cif. Fig. 1 (c). The network takes in the four-
channel descriptor as input, and predicts a scalar in the form of a
score associated with the log-likelihood of the input with respect
to the training data. A contrastive divergence scheme [58] was
used during training of the network, which maximised log-
likelihood (or the energy score) for in-distribution surfaces while
minimising that for out-of-distribution surfaces (see Supplemen-
tary Information for more details). In other words, a higher energy
score from the network is better as it indicates that a surface is
well represented in the training set — this is a convention for
energy networks in machine learning and opposite to the intuitive
understanding of energy from physics.
3. Results

We used the hydration layer densities over (10�14) dolomite,
(010) boehmite, (010) pyrophyllite surfaces in addition to the test
cases of (10�14) calcite, magnesite, and (001) mica to benchmark
the four-channel descriptor, see Fig. 2. We trained the network
on an extensive set of the calcite surfaces and progressively add
magnesite and mica surfaces to monitor the training. We compare
the simulated and predicted densities by plotting the 1D mean
density along the z direction for the dolomite surface. We also plot
the 2Dmean density, and xy slices of the hydration layers along the
z direction. Further, we plot the prediction errors to gauge the
transfer learning ability of the element-agnostic approach, along
with the score of the energy-based DL model, with the progressive
inclusion of several surfaces in the training set. We use matplotlib
[59] to plot the graphs.

In the first stage of training, the DL U-Net model was trained on
the calcite and magnesite surfaces. The training data didn’t contain
any surfacewith dolomite (which has both calcium andmagnesium
atoms, Fig. 2). Hence, the network wasn’t trained to understand the
interplay of the hydration layers over the magnesium and the cal-
cium atoms. Regardless, similar to the previous network[25], the
network predicts the location of the hydration layers well, albeit
with slightly offset magnitudes, cif. Fig. 3 (c, d). On comparing the
2D slices in Fig. 3 (a), the hydration density peaks clearly affect the
neighbouring peaks. Moreover, the predicted hydration-density-
peak features over the calcium and the magnesite layers are similar
to that in the simulated case. The network is distinctly able to exhi-
bit the difference in the hydration layers over the calcium and the
magnesium atoms[60], and deduces the interplay between the cor-
responding hydration peaks reasonably. This justifies the choice of
the descriptor, especially given that the magnesium and calcium
elements differ very slightly in their pair-coefficient forcefield terms
with oxygen in the water model, and have the same charge in the
forcefield parameterised by Raiteri et al. [48].

In the second stage of training, three versions of the model were
trained with cascading training sets. The first network was trained
on the calcite surfaces, while the second network continued with
the parameters of the first network, albeit trained on calcite and
magnesite surfaces. Similarly, the third network used the parame-
ters of the second network, and was trained on calcite, magnesite,
and mica surfaces. The mean absolute error (MAE) — L1 error — of
the three networks in predicting the hydration layers of the dolo-
mite, pyrophyllite, and boehmite surfaces, and the test sets of the
calcite, magnesite and mica surfaces, is plotted in Fig. 5 (a) of the
three networks. It is clear that the progressive inclusion of varied
surfaces in the training sets results in a decrease in the prediction
error.



Fig. 3. Hydration layers prediction over (10�14) dolomite surface using the U-Net trained on (10�14) magnesite and calcite surfaces. (a) 2D slice comparison of the hydration
layers in simulated and predicted hydration layer density. (b) 2D xz plane mean hydration layer density, (c) 1D z direction hydration layer density. (d) 1D hydration layers,
along z axis, averaged over the calcium and the magnesium surface atoms. The blue, orange, red, and brown balls represent calcium, magnesium, oxygen, and carbon atoms,
respectively.

Fig. 2. Surface slab of (a) (10�14) calcite, (b) (10�14) magnesite, (c) (10�14) dolomite, (d) (001) mica, (e) (010) pyrophyllite, (f) (010) boehmite. The vertical lines represent the
unit cell. The tetrahedral silicon-oxide structure is represented by a yellow tetrahedron. The atoms of carbon, oxygen, calcium, magnesium, aluminium, hydrogen, and
potassium are represented with balls of brown, red, blue, orange, grey, green, and purple colour. The visualisations are made in VESTA [27].
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To test the generality of the trained networks, hydration layers
were predicted on the surfaces of (010) pyrophyllite and (010)
boehmite. The MAE of the predictions are higher, cif Fig. 5 (a).
We attribute this to the fact that the surface structure of Al-O-H,
present in pyrophyllite and boehmite, is not well represented in
the mica-surface training set. Furthermore, the hydration-layer
peaks predicted have a slight offset, cif Fig. 4 (d, h). For the hydra-
tion layers over boehmite surface the features in the xy slice of the
first peak are similar, as seen in Fig. 4 (e), while the DL network
predicts faint patterned features in the second and third peak
which are non-existent in the simulated images. In the case of
pyrophyllite, Fig. 4 (a), the network highlights some features in
the xy slices more than others, when compared to the simulated
images. Moreover, in the slice corresponding to the second peak,
the network fills more water in the void seen in the simulated
Fig. 4. Prediction of hydration layers over (010) pyrophyllite and (010) boehmite surfac
surfaces. (a)[(e)] 2D slice comparison of the hydration layers in simulated and predicte
predicted 2D xz plane mean hydration layer density over pyrophyllite [boehmite], (d)[(h

Fig. 5. (a) Mean absolute error in the prediction of hydration layers with networks train
different training surfaces. The ”Ca”, ”Mg”, and ”Mica” labels represent the training se
predictions are shown on the calcite test set, the magnesite test set, the mica test set, a
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images, while capturing the light feature in the middle of the void.
However, we note that our z-slice comparison is quite thorough
and such differences will not be noticed in AFM images where
the amplitude of the tip-oscillation convolves several z-slices [16].

In the final stage of the training, similar to the last step, three
versions of the energy-based DL models were trained with cascad-
ing training sets. The energy values, or score, are plotted for the
dolomite, pyrophyllite, and boehmite surfaces, along with the test
sets of the calcite, magnesite and mica surfaces, using the three
networks, as seen in Fig. 5 (b). A similar trend is observed where
with progressive inclusion of varied surfaces in the training sets
the predicted energy or the score of newer surfaces increases.
However, due to the contrastive divergence method, the magni-
tude of the energy values are not normalised. Therefore, an exter-
nal observable is needed to understand the energy values. Using
e using the U-Net DL network trained on (001) mica, (10�14) magnesite and calcite
d hydration layer density over pyrophyllite [boehmite]. (b, c)[(f, g)] simulated and
)] 1D z direction hydration layer density over pyrophyllite [boehmite].

ed on different training surfaces. (b) Energy values of surfaces with training data of
ts of (10�14) calcite, (10�14) magnesite, and (001) mica surfaces, respectively. The
nd the surfaces of dolomite, pyrophyllite, and boehmite.
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the MAE of the DL models, we can infer that the energy values
above �5.1 indicate a reasonable prediction from our DL U-Net
model. This implies that DL prediction can be used for the surfaces
with an energy score above �5.1, otherwise MD simulation should
be performed, cif Fig. 1 (c).

4. Conclusion

The DL U-Net architecture is a robust network suitable for
machine translation tasks. The U-Net, combined with the novel
four-channel forcefield-based descriptor — introduced in this work
— can predict the hydration layers over surfaces with varied atomic
structure. This element-agnostic approach is rapid, robust, and
reliable. Additionally, the transfer learning technique is demon-
strated during training such network. With the ability to reuse
the training sets and the pre-trained model, the process of aug-
menting the training surfaces with newer surfaces is made
straightforward. The energy based DL network is shown to identify
out-of-distribution surfaces with its score as a figure-of-merit. A
possible workflow is identified where new surfaces are tested with
the energy based DL network, and the DL network is used to pre-
dict the hydration layers over the surface if the score is above
the threshold, otherwise an MD simulation is performed. More-
over, this MD simulation of the out-of-distribution surface can be
included in the training data to make the DL network more robust.
This makes the workflow highly scalable and applicable to other
surfaces in general.

Further work can involve using the solvent tip approximation
(STA)[19], or its successor extended-STA[21,17], to simulate hydra-
tion layers as seen by AFM. A network trained on such target
hydration layers can circumvent an additional step of performing
such simulations, and get closer to direct AFM characterisation
with a comprehensive DL workflow. Ultimately, as new materials
are introduced to the training workflow, the DL network should
gradually develop into a general tool for the rapid prediction of
hydration structures on any interface without the need for direct
MD simulations.
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